

Engineering Standards and Design Practices
No hardware, purely software

Agile

Modular code

Clean code

Well documented code

Summary of Requirements

Runs in CLI

Parses Helm charts

Creates policies based on rules provided in templates

checks configs of helm charts and alerts if they fail

Applicable Courses from Iowa State University Curriculum
SE 309 - Working as a team with the Agile work process

SE 363 - Used Docker after the provided virtual machines were not working.

SE 311 - Working with data structures and developing the most efficient

algorithms

As far as for the tools that we are using for this project, there are no classes that

are teaching extensive Python or Docker skills. For the classes that we did use

these tools in, it was only because we were interested in learning and the learning

was self guided.

SDDEC​20-​XX​ 1

New Skills/Knowledge acquired that was not taught in courses
Configuration with Kubernetes

Parsing Files with Security Checks

Experience with Python Programming Language

Communicating to an Advisor of our group’s progress

Communicating to an Advisor with team management

Manipulation of Helm Charts

Knowledge of Python in General

Helm configuration

Docker usage

SDDEC​20-​XX​ 2

Table of Contents
1 Introduction 5

1.1 Acknowledgement 5

1.2 Problem and Project Statement 5

1.3 Operational Environment 5

1.4 Requirements 5

1.5 Intended Users and Uses 6

1.6 Assumptions and Limitations 6

1.7 Expected End Product and Deliverables 7

2. Specifications and Analysis 8

2.1 Proposed Approach 8

2.2 Design Analysis 8

2.3 Development Process 8

2.4 Conceptual Sketch 9

3. Statement of Work 10

3.1 Previous Work And Literature 10

3.2 Technology Considerations 10

3.3 Task Decomposition 11

3.4 Possible Risks And Risk Management 11

3.5 Project Proposed Milestones and Evaluation Criteria 11

3.6 Project Tracking Procedures 12

3.7 Expected Results and Validation 12

4. Project Timeline, Estimated Resources, and Challenges 12

4.1 Project Timeline 12

4.2 Feasibility Assessment 13

4.3 Personnel Effort Requirements 13

4.4 Other Resource Requirements 15

4.5 Financial Requirements 15

5. Testing and Implementation 15

5.1 Interface Specifications 15

5.2 Hardware and software 15

SDDEC​20-​XX​ 3

5.3 Functional Testing 15

5.4 Non-Functional Testing 16

5.5 Process 18

5.6 Results 18

6. Closing Material 20

6.1 Conclusion 20

6.2 References 21

6.3 Appendices 21

List of figures/tables/symbols/definitions

Figure 1: Conceptual Sketch 9

Figure 2: Gantt Chart 13

Table 1: Effort requirements with explanation 14

Link 1: ​https://aws.amazon.com/inspector/ 10

Link 2: ​https://www.aquasec.com/solutions/kubernetes-container-security/ 10

Photo 1: Example of Passed/Failed Policies 16

Photo 2: Process Mockup 18

Photo 3: Client's Approval 19

SDDEC​20-​XX​ 4

https://aws.amazon.com/inspector/
https://www.aquasec.com/solutions/kubernetes-container-security/

1 Introduction

1.1 A​CKNOWLEDGEMENT

Julie Rursch​ - Group Advisor

Eric Anders ​- Workiva

Thank you for your contributions!

1.2 P​ROBLEM​ ​AND​ P​ROJECT​ S​TATEMENT

There does not exist a tool that checks the configuration of helm charts nor the configurations
produced by them. Linters and syntax checkers exist, however, they only check that the helm
charts are formatted correctly. They do not check that clusters comply with predefined rule sets.

By creating an extensible framework we hope to provide a well documented, highly extensible,
useful tool that prevents a lot of security issues that can exist when using kubernetes. Often the
setup of these services is done without enough thought put into the security of the company. Our
project will allow companies to be more confident about the security and the correct initialization
of their clustered computing setups.

There is nothing out there that exists on what we are trying to accomplish. Our drive is not only to
give the open-source community this tool but also be the first people to craft a tool like this. Since
this project will be open source it will also service its users better because of the potential for future
community development.

1.3 O​PERATIONAL​ E​NVIRONMENT

The end product will run in a Command Line Interface, and will not be exposed to unusually
hazardous conditions. This is solely software-based, so there will be no expectations physically for
the product. However, we do expect the end product to be able to run on Linux and MacOS.

1.4 R​EQUIREMENTS

Functional requirements

● System should parse and check Kubernetes configuration files
● System should parse and check helm charts
● Command-line interface should allow for easy interaction with the system
● System should alert the user of potential security vulnerabilities
● System should suggest how to fix potential security vulnerabilities

Economic requirements

SDDEC​20-​XX​ 5

Since the project is almost entirely software, there are very few economic requirements.
There is no hardware that needs to be purchased or licenses that need to be paid for since
the project will be entirely open-source.

Environmental requirements

Again, since the project is almost entirely software-bound, the physical environment has
no effect on it. There is no hardware that could be exposed to the elements or poor
weather. In terms of the computer architecture environment, the project should be able to
run on macOS and *NIX systems.

UI requirements

To keep the program lightweight and portable, the UI will not consist of a GUI, but rather
a command-line interface. This is plenty sufficient for usability and fulfilling the intended
use cases.

1.5 I​NTENDED​ U​SERS​ ​AND​ U​SES

The intended user is the person conducting a security review for a Kubernetes project.

The intended use is to streamline and reduce user error in the process of checking security
configurations against a defined ruleset.

1.6 A​SSUMPTIONS​ ​AND​ L​IMITATIONS

Assumptions

We assume that the user will have a basic knowledge of Kubernetes security configurations.

We assume that the user will have a basic knowledge of security with files in general

These assumptions are made because the intended user is for someone who wants to perform
security checks with Kubernetes. Someone who doesn't have this previous knowledge probably
wouldn't be using this then.

Limitations

The end product will be lightweight and run in a CLI.

We expect the end product to be able to run ​Linux and macOS.

We expect the end product to be able to effectively perform a security review.

It will not add functionality to kubernetes, but to the initialization and setup.

The product will need to be sought after in order to be found as it is not a commercial product.

SDDEC​20-​XX​ 6

1.7 E​XPECTED​ E​ND​ P​RODUCT​ ​AND​ D​ELIVERABLES

The end product and deliverables for our senior design project are as follows.

● A lightweight and portable CLI program that can check, verify, and alert users about
potentially insecure and vulnerable Kubernetes configurations and helm charts.
Lightweight means that it must be a small program that can be downloaded quickly from
any internet connection. Portable means that it is not system-dependent and can run on a
multitude of Operating Systems.

● Extensive documentation on the installation and use of the program so that anyone will be
able to understand and use this. This documentation will include readme markdown
documentation for outside users intending to use the program. Additionally, this will
include a well-commented code for the open-source community intending to clone and
contribute to the repository.

● Open-source code for continual improvement by the open-source community. It is proven
that open-source code is more cost-effective, quicker to develop, much more
secure/transparent, and more extensible in the future by anyone. We are making our
program open-sourced for the aforementioned reasons

The delivery dates for these deliverables is T.B.D due to the nature of the senior design program.
We can estimate that the above will be ready sometime around May of 2020.

SDDEC​20-​XX​ 7

2. Specifications and Analysis

2.1 P​ROPOSED​ A​PPROACH

We have a proof-of-concept program capable of parsing configuration YAML files.

The application will parse and analyze Helm and Kubernetes security configuration files, and
compare the results against a defined set of rules.

The application will run in CLI.

The application will accept templates of rule sets to compare to.

The application will be rigorously tested to sufficiently ensure correctness.

2.2 D​ESIGN​ A​NALYSIS

Our group has been communicating with both our advisor and each other about team roles and
planning for our code development. We have mostly been communicating through online
messaging with our entire team. Although our team has also met in person as well. So far our
meetings, whether that be face-to-face or online, have been very successful. Each one of us is able
to understand what is expected and we are able to hold each other accountable for tasks that need
to get done.

Our strengths are communication and expectations. Everyone in our team is okay with sharing
their thoughts and ideas. Expectations are clearly understood and set as well. Our biggest weakness
is availability. All of our members are extremely busy so finding times to meet in person is a
challenge.

Observations and thoughts on our team style so far are mostly positive. We all are communicating
effectively and getting tasks done on time.

Finally, our team members have been learning the Python language. This is the language that we
will be developing our code in.

2.3 D​EVELOPMENT​ P​ROCESS

We are using an Agile development process because our requirements are well-defined but we are
meeting with our team every couple of weeks to make adjustments if needed.

We are developing one part at a time, testing it with our tests, showing our advisors what we have
how it works now, and testing it in the environment it will be used, and making any necessary
changes.

SDDEC​20-​XX​ 8

2.4 C​ONCEPTUAL​ S​KETCH

Figure 1: Conceptual Sketch

SDDEC​20-​XX​ 9

3. Statement of Work

3.1 P​REVIOUS​ W​ORK​ A​ND​ L​ITERATURE

One product that has some similarities to our product is Amazon's "Inspector". This program
automatically improves the security of applications on AWS. Then it will show the user where the
threats are and explain to the user how serious each threat is. The difference is that "Inspector" only
deals with applications on AWS and it doesn't relate to Helm at all.

Source: See ​Link 1

Aqua works with Kubernetes and performs security checks daily. After the check, Aqua will make a
report based on their findings. This is similar to our project because this analyzes security flaws
with Kubernetes. Although this differs from our project because our project is focusing more
heavily on Helm charts.

See Link 2

3.2 T​ECHNOLOGY​ C​ONSIDERATIONS

Strengths -

Hardware wise there wasn't much consideration because our product is purely software. One of our
requirements was that our product should be able to run on any OS that supported Kubernetes. So
our strengths for these considerations were mostly that there wasn't much to consider on the
hardware side.

Languages wise though had a lot of thought. Our group mostly considered the difference between
coding in Python and Go. Python was chosen in the end. The strengths of Python were as follows:
the language is relaxed when it comes to syntax, it is compatible with Kubernetes, and everyone in
our group was very familiar with the language.

Weaknesses -

The main weakness with Python was the testing and importing. Our team struggled with effectively
importing different methods to different classes while working with Python. Setting up Pytesting
was also a struggle for our team. We were unfamiliar with effectively importing these
tools/methods.

SDDEC​20-​XX​ 10

Trade-offs -

The benefits far outweighed the struggles our team faced with importing tools/methods. Once our
team overcame the weaknesses, we were able to quickly develop our code/tests. The biggest
tradeoff was time for faster development overtime.

Had our team stuck with Go, we would've had a harder time coding our parsing functions, storing
information, and testing our code. Python's advantage over Go is that Python's generic types with
structures and variables were easier to implement than Go was. This was mostly due because our
team had more experience with Python than Go.

3.3 T​ASK​ D​ECOMPOSITION

The main tasks that we will need to do for this are to break the helm chart/kubernetes down before
and after running in order to parse them to check for inaccuracies. Once this is done we will be
able to create a user interface for the project. This user interface is important because it is what is
going to allow us to add the extras after aside from the parsing, we will need to finish that before
we go on to making a template generator. Aside from that it is just the linter that will need to be
added and whatever else we want to add if we find that we want more.

3.4 P​OSSIBLE​ R​ISKS​ A​ND​ R​ISK​ M​ANAGEMENT

Lack of experience in the area is a risk we are actively combating through studying Python and
Kubernetes.

Loss of one or more team members is a possible severe risk, we are mitigating this risk by ensuring
our documentation is routinely up-to-date such that a team change would not result in a
catastrophic loss of progress or information.

Risks such as the obsolescence of Kubernetes are insignificantly likely, though even in the event
such things come to pass we could transfer the skills we learn here to whatever may replace it.

3.5 P​ROJECT​ P​ROPOSED​ M​ILESTONES​ ​AND​ E​VALUATION​ C​RITERIA

Key milestones would consist of the following: Parsing of helmcharts/kubernetes files, parse
templates and store values after configuration, check values of parsed info to make sure it has
finished correctly, create alerts based off of the incorrect info, make a user interface for the
application, setup a template generator, add a linter to the system. Each of these milestones are
designed so that they are able to be tested task-wise. When we reach these milestones we will know
because all of these are provable/tangible parts of our project. The tests for each of these milestones
will be dependent on what is being tested. Most of the important testing will be to make sure our
parsed information is correct and we will need to spend a lot of time on this because the entire
project is reliant on this being correct.

SDDEC​20-​XX​ 11

3.6 P​ROJECT​ T​RACKING​ P​ROCEDURES

First off we spoke with our advisor and we set milestones on what we want to accomplish. We are
going to track ourselves with when we hit those milestones and whether it was before or after our
"due date". Also, we will be tracking our progress through completed issues on Github. Based on
how many issues get done per person, we will determine the difficulty of every task and determine
how much work they have done. So if a GitHub issue is harder than normal, then when that task is
completed then that person will have done more work compared to an average Github issue. We
are following the agile style of development so we will also make note of when someone gets their
smaller tasks done on time.

3.7 E​XPECTED​ R​ESULTS​ ​AND​ V​ALIDATION

The desired outcome of the project is a lightweight application running on the command line,
parsing Kubernetes configurations and alerting the user on incorrect configurations. The
application should be able to be configured for various templates.

We will confirm that our solutions work at a high level through rigorous testing and using charts
used in the client’s environment.

4. Project Timeline, Estimated Resources, and Challenges

4.1 P​ROJECT​ T​IMELINE

Dec 30 2019 Phase 1

● Project design planning
● Requirements gathering
● Regular team meetings to plan and schedule
● Familiarization with framework and languages
● Design document drafting
● Initial implementation of the parser

Feb 15 2020 phase 2

● Ability to parse templates AND store proper configuration values

Mar 10 phase 3

● Alert/Gracefully handle misconfigured values

Mar 20 phase 4

● Make a GUI for easy interaction with the program

SDDEC​20-​XX​ 12

● GUI is either standalone or integrated with a tool like Rancher

April 1 phase 5

● Provide template generation - making it easier to user and less error prone
● Possibly make a GUI for template generation
● Like phase 4, could integrate with a tool like Rancher

April 12 phase 6:

● Implement functionality to alert on CVEs found in the stack running the containers

April 22 phase 7:

● Add a linter for security policy templates
● Add additional features as we see fit
● Optimize for speed and size

Figure 2: Gantt Chart

4.2 F​EASIBILITY​ A​SSESSMENT

Realistically, the project will sufficiently fill our requirements, though it is unlikely to fulfill some of
our unofficial open-ended nonfunctional requirements. Examples of challenges we have foreseen
are that GoLang does not support the data structures we initially planned to use, requiring us to
reconfigure our plans and use Python instead, and that because only superficially similar
applications exist we cannot take significantly useful inspiration from those.

4.3 P​ERSONNEL​ E​FFORT​ R​EQUIREMENTS

SDDEC​20-​XX​ 13

Table 1: Effort requirements with explanation

Task Text reference/explanation Estimate of effort

Parsing of helm
charts/kubernetes files

This will be the first milestone
that we will need to accomplish
and will allow a base to check
against

This is going to be the medium
difficulty because it is
important that this is robust
and holds up with many test
cases.

Parse templates and store
values after configuration

This will likely be mainly be
similar to the previous one but a
bit more difficult because they will
be checked off of configured
setups.

This will be similar to above
but with an added layer of
difficulty as we are needing to
check the already run
templates to verify that the
setups have run correctly and
store that info.

Check values of parsed
info to make sure it has
finished correctly

This will be the core of our
product and will be important to
get correct, as well as important to
test.

Assuming we are able to get
our information setup side by
side with the before an after,
this will just be a check to
make sure the values are the
same

Create alerts based off of
the incorrect info

This is going to the first part of the
user portion of the program

This is going to be triggered by
the above check, and should
not be

Make a user interface for
the application

This will make the application
easy to use

This will be difficult because
we will need to make sure it is
simple to use and difficult to
break. Also making this robust
for our use will be important so
that it eases the use for the
customer.

Setup a template
generator

This is an addition and not a core
feature but will be important

This will, as above help with
the robustness for user ease. It
will not be difficult, but will
require us to be very
knowledgeable on the
relationships between different
settings on the helm charts.

Add a linter to the
system

This is another feature that will
add robustness to our application

The linter is something that
already exists, but since we
would like our project to be
powerful it is important to
have it. Since it does exist, it
will not be too hard, and we

SDDEC​20-​XX​ 14

will be able to take inspiration
from other open source
examples.

4.4 O​THER​ R​ESOURCE​ R​EQUIREMENTS

No additional resources will be required to conduct the project.

4.5 F​INANCIAL​ R​EQUIREMENTS

No additional financial resources will be required to conduct the project.

5. Testing and Implementation

5.1 I​NTERFACE​ S​PECIFICATIONS

Our project will not be dealing with hardware and software interfacing with each other and our
project will be able to be run on both Unix based systems and Windows systems since it will be
written using Python. Because of this, the effects of hardware interfacing will not be important.

5.2 H​ARDWARE​ ​AND​ ​SOFTWARE

We do not require any hardware specifications due to our project being a lightweight software
program. We are currently testing in visual studio code with simple test cases and simple yaml files
to validate our proof of concept.

We currently have some basic unit tests to ensure there is no regression in functionality. We
initially planned on having much more robust and comprehensive testing implemented. However,
changing programming languages and dealing with programming language level issues got in the
way of that.

5.3 F​UNCTIONAL​ T​ESTING

In addition to unit testing, we performed functional testing to ensure that we are meeting the
requirements laid out by the client. We focus on working with the Chart.yaml files and the
Values.yaml files. During our functional testing, we ensured that the project works with:

- Both relative and absolute paths

SDDEC​20-​XX​ 15

- A variety of charts with different fields and structures
- Charts with values allowed/not allowed within the defined security policy
- Different security policies
- Multiple values files
- Random charts from the Helm Chart repository

Photo 1: Example of Passed/Failed Policies

A link to a video of our program running during functional testing:
https://drive.google.com/file/d/1v1DxydQfT082FCzYJgzKHv5UIyMGMDED/view?usp=sharing

5.4 N​ON​-F​UNCTIONAL​ T​ESTING

Performance -

The project must be fast enough that it could reasonably run in a CI/CD system and on a
developer’s computer. To test the performance of the application, we print how long the program
took to run. In the screenshot above, it took about .05 seconds to check each of the values files that
were passed in. This is about the average time it takes to run. Given that this speed is orders of
magnitude faster than what the maximum acceptable time (a few minutes) would be, not much
more testing needs to be done.

Security -

SDDEC​20-​XX​ 16

https://drive.google.com/file/d/1v1DxydQfT082FCzYJgzKHv5UIyMGMDED/view?usp=sharing

Our final product will be open source so anyone would be able to use it and contribute to the
project. We also wanted to make sure we are doing everything in a safe manner to protect not just
our client, but all potential users. Our program does not require any special permissions, does not
affect the underlying system in any way, and uses a safe loader for the yaml files. Consequently,
there is no grounds for any security concerns regarding our project.

Usability -

Usability testing was done by having our client utilize our product. The only aspect that users will
have to change would be the policies that they want to check and the file paths to their policy file,
value file, chart file, and output directory. That sounds like a lot of paths but we countered that
with all those file paths being in one config file that our product will use throughout the
parsing/checking.

Compatibility -

We were able to effectively run our program on Windows, MacOS, and Linux. This exceeds the
requirement set by the client that it works with MacOS and Linux. The program has also been
successfully tested in the client’s environment.

SDDEC​20-​XX​ 17

5.5 P​ROCESS

We mocked a simple input/result test. We gave test files that we expected to pass and then we gave
test files that we expected to fail. Then if the desired result was not met, we would make changes to
our code.

Photo 2: process mockup

5.6 R​ESULTS

The testing phase was where we spent a bulk of our time.

Failures

We were having a lot of issues expanding on our Proof of Concept. We tried a number of solutions
for reading and storing charts which ultimately failed. There are ways to do this in Go, but we could
not seem to get this to work properly. We spent months trying different work arounds to no avail.
The traditional method of reading the data that we needed involves saving the data to a struct and
working from there. This immediately failed for us due to how unordered the information we are
dealing with is. For example a helm chart could have just one image, or it could have multiple
images.

Eventually we got the necessary approval to switch the programming language we were using to

SDDEC​20-​XX​ 18

Python. We quickly achieved parity with our old proof of concept and solved the issue we faced in
Go. Then however, we started running into Python path issues as well as issues setting up the
Python modules we developed. It took a lot of trial and error, but we were able to change how we
were doing imports, added a setup.py file and we were able to get back on track with our project.

Successes:

Despite all of the issues we faced, we were able to overcome the setbacks we faced and create a
successful project. We built software that was exactly what the client expected. Below is a
screenshot of Slack messages with our client where he expressed satisfaction in our results.

Photo 3 - Client Approval

In the planning phase of the project, we broke the project up into six phases that would be worked
on sequentially. We structured our work so that we met the client’s requirements once we
completed phase three. This was to allow time to resolve any setbacks that we might face, as well as
to try to deliver the best possible project to the client. Everything after phase three was additional
features to improve the project. This project management setup ended up being very beneficial in
the end. This structure allowed us the time needed to resolve our setbacks and still accomplish
phase three, satisfying the client.

We also sought to make this project fast. We have all experienced the need to wait a great deal of
time for the software necessary for your work to finish running and wanted to avoid that.
Thankfully we did. Our program runs in less than a second and lends itself well to being run
automatically on a variety of different projects.

Learned:

SDDEC​20-​XX​ 19

The two main lessons we learned are: allocate more time than might be strictly necessary and
explore alternative routes to the solution when it feels like you’re just spinning the wheels.
Allocating extra time by scheduling the requirements to be completed halfway through the project
afforded us the breathing room we needed to work through the unplanned issues we inevitably
encountered. Getting frustrated one afternoon and recreating our initial proof of concept using
Python allowed us to switch the language we were using and to start making real progress on our
project.

6. Closing Material

6.1 C​ONCLUSION

Our product effectively checks a given set of policies against a values file that defines a chart. Based
on the given policies and values, our product will effectively alert the user on passed/failed values
that have met the user's given policies. Our goals were to effectively parse and alert the user of
passed/failed values based off of a user's desired policies. Our only goal that was not met was
alerting the user on how to fix/modify policies that failed.

The plan of action that we took to achieve most of our goals was broken into seven phases. What
was required from our client was only the first three phases. Each phase had smaller sub-tasks in
which each member of our team would complete every two weeks. We gave ourselves strict
deadlines for the first three phases since that's what was expected from our client. We had one
team member in charge of parsing, one in charge of storing, one in charge for checking values, and
two in charge of testing. When a phase was completed, our team members would combine each
other's work and then more testing would be done. The constant two-week cycles and testing
allowed our team to manipulate code without suffering a big loss in time.

The plan of action that will take place in alerting the user on how to fix the failed policies will get
done with more testing at Workiva. Since this project is open source though, more users outside
Workiva can add to the product and the maintenance overtime will keep the project up to date.

This will surpass other solutions being tested because of the amount of developers working on this.
Nothing like our product has been made before, but the open source aspect will give the
opportunity to have more eyes utilizing our product and refining it. The constant maintenance will
ensure that this surpasses other previous tested solutions.

SDDEC​20-​XX​ 20

6.2 R​EFERENCES

P. Balogh and S. Guba, “Detecting and blocking vulnerable containers in Kubernetes

(deployments),” ​· Banzai Cloud​. [Online]. Available:

https://banzaicloud.com/blog/anchore-image-validation/. [Accessed: 26-Apr-2020].

hub.helm.sh​. [Online]. Available:

https://hub.helm.sh/charts/banzaicloud-stable/anchore-policy-validator. [Accessed:

26-Apr-2020].

hub.helm.sh​. [Online]. Available: https://hub.helm.sh/charts/smallstep/autocert. [Accessed:

26-Apr-2020].

“Single Sign-on SSH & Production Identity,” ​Smallstep​. [Online]. Available:

https://smallstep.com/. [Accessed: 26-Apr-2020].

6.3 A​PPENDICES

Appendix I - Operation Manual

To find step by step instructions on how to setup/demo/test please visit the readme in our
repository

SDDEC​20-​XX​ 21

